ARC Centre of Excellence for Integrative Legume Research

Nodule Number Control

Lisette Pregelj – Education and Outreach Manager

Nodulation Control

- Legumes actively control nodule numbers
- Control is genetic
- Ensures the plant doesn't give away too much sugar
- Tight control
- Called Autoregulation of Nodulation (AON)

Normal

Autoregulation of Nodulation

- Long distance signalling between root and shoot
- Once the Nod factor has bound to its receptor (Nod Factor Receptor), a signal is released and translocated to the leaf
- Another receptor in the leaf receives the signal (Nodulation Autoregulation Receptor)
- This receptor is a protein kinase and commonly referred to as NARK (Nodulation Autoregulation Receptor Kinase)

Autoregulation of Nodulation

- NARK receives the signal and produces a second signal
- We call this second signal the Shoot Derived Inhibitor (SDI)
- SDI moves down the plant to the roots and inhibits the formation of any new nodules
- Ensures nodule numbers do not get out of control to the detriment of the plant

Nodulation Control

- Sometimes the genes do not work properly (mutation)
- Results in inability to control nodule numbers
- Supernodulation
- This mutant is soybean nts1007
- Has a mutation in the NARK gene

Normal

Mutant

Leaf Control

 We know that Autoregulation of Nodulation is controlled in the leaf:

GMNARK

- Soybean's botanical name is Glycine max
- Therefore its NARK gene is commonly referred to as GmNARK (Glycine max Nodulation Autoregulation Receptor Kinase)
- GmNARK works with a number of other genes/proteins
- GmNARK has near relatives in other legume such as Pea, Lotus and Alfalfa

GMNARK

- Model of what we think GmNARK interacts with
- Our job here at the CILR is to discover exactly what these extra proteins are
- We are on the right track!

CILR

- We are currently trying to identify what the different signals are that move between legume roots and leaves
- When we know more, we can apply this knowledge to non-legume species
- Crops can then make own ammonia from nodules
- No need to fertilise!
- Less run-off pollution and environmentally safe!

CILR

- University of Queensland
- Australian National University
- University of Melbourne
- University of Newcastle

CILR

ARC Centre of Excellence for Integrative Legume Research

Contact Us

HQ: University of Queensland

Tel: 3365 3550

Email: director.CILR@uq.edu.au

lisette.pregelj@uq.edu.au

Visit Our Website! www.cilr.uq.edu.au

Picture and Diagram Credits

- Uli Mathesius
- Mark Kinkema
- Peter Gresshoff
- Dana Hoffmann
- Michael Sheahan
- Sureeporn (Ning) Nontachaiyapoom
- Paul Scott
- Brett Ferguson