Genetic and physical mapping of flowering time loci in canola
(\textit{Brassica napus} L.)

\textbf{Harsh Raman} · Rosy Raman · Paul Eckermann · Neil Coombes ·
Sahana Manoli · Xiaoxiao Zou · David Edwards · Jinling Meng · Roslyn Prangnell ·
Jiri Stiller · Jacqueline Batley · David Luckett · Neil Wratten · Elizabeth Dennis

Received: 6 May 2012 / Accepted: 10 August 2012 / Published online: 7 September 2012
© Springer-Verlag 2012

\textbf{Abstract} We identified quantitative trait loci (QTL) underlying variation for flowering time in a doubled haploid (DH) population of vernalisation—responsive canola (\textit{Brassica napus} L.) cultivars Skipton and Ag-Spectrum and aligned them with physical map positions of predicted flowering genes from the \textit{Brassica rapa} genome. Significant genetic variation in flowering time and response to vernalisation were observed among the DH lines from Skipton/Ag-Spectrum. A molecular linkage map was generated comprising 674 simple sequence repeat, sequence-related amplified polymorphism, sequence characterised amplified region, Diversity Array Technology, and candidate gene based markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 20 loci, localised on ten different chromosomes. These loci each accounted for between 2.4 and 28.6 % of the total genotypic variation for first flowering and response to vernalisation. However, identification of consistent QTL was found to be dependant upon growing environments. We compared the locations of QTL with the physical positions of predicted flowering time genes located on the sequenced genome of \textit{B. rapa}. Some QTL associated with flowering time on A02, A03, A07, and C06 may represent homologues of known flowering time genes in \textit{Arabidopsis}; \textit{VERNALISATION INSENSITIVE 3}, \textit{APETALA1}, \textit{CAULIFLOWER}, \textit{FLOWERING LOCUS C}, \textit{FLOWERING LOCUS T}, \textit{CURLY LEAF}, \textit{SHORT VEGETATIVE PHASE}, \textit{GA3 OXIDASE}, and \textit{LEAFY}. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for low rainfall areas, via marker-assisted selection.

Communicated by R. Visser.

\textbf{Electronic supplementary material} The online version of this article (\doi{10.1007/s00122-012-1966-8}) contains supplementary material, which is available to authorized users.

H. Raman · R. Raman · N. Coombes · R. Prangnell · D. Luckett · N. Wratten
EH Graham Centre for Agricultural Innovation
(an alliance between NSW DPI and Charles Sturt University),
Wagga Wagga, Australia

H. Raman (✉) · R. Raman · D. Luckett
NSW Agricultural Genomics Centre, NSW Department of Primary Industries, Wagga Wagga Agricultural Institute,
PMB, Wagga Wagga, NSW 2650, Australia
e-mail: harsh.raman@dpi.nsw.gov.au

P. Eckermann
School of Agriculture, Food and Wine,
The University of Adelaide, Urrbrae, SA 5064, Australia

S. Manoli · J. Stiller · J. Batley
School of Agriculture and Food Sciences,
University of Queensland, St Lucia, QLD, Australia